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Abstract— The paper presents the application of
Interval Mathematics as a new method to, rigorously,
address  uncertsinties associated with capacitor
installation in distribution feeders. While several
methods exist to determine optimal eapacitor sizes and
locations in distribution feeders, these methods usually
require data which may be uncertain in nature. To
account for such uncertainties a heuristic method coupled
with interval mathematics is developed with the aim of
maximizing the cost saving by placing single node-located
capacitors at a selected sequence of nodes. The method
determines a set of nodes to be compensated with their
associated interval capacitor sizes; followed by a local
search loop, at any one node, to determine the final
standard capacitor size at this node. While catering for
uncertainties, the method also offers utilities with
alternatives for selecting the standard capacitor sizes to
be used and the associated costs to be saved. This should
enable utilities to make informed decisions regarding
installing capacitors for reactive power compensation in
their distribution systems. A procedure is devised in
order to produce sharp bounds of the interval outcomes.
Successful implementation of the proposed method is
described using a nine buses example distribution feeder.
Index  Terms— reactive power compensation,
distribution systems, interval mathematics, uncertainty.

L. INTRODUCTION

ENERGY management through reactive power
compensation on distribution systems has.

recently, emerged as a topic of current research
interest [1]-{4). Reactive power flow in a distribution
system produces losses and results in increased rating
for the system components. Shunt capacitors are
usually installed to reduce these power losses, increase
the released thermal capacities of the lines and
transformers and improve the system voltage profile.
However, the data employed in the reactive power
compensation analysis is usually derived from many
sources with varying degrees of accuracy. Accounting
for such uncertainties is necessary to produce realistic
results which utilities can employ to make informed
decisions regarding reactive power compensation in
their distribution systems.
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Uncertainties can be looked upon as a condition in
which the possibility of errors exists as a result of
having less than total information about the
surrounding environment. They are beyond the
utility’s foreknowledge or control. In a distribution
system, the reactive load is always varying and it is not
a realistic proposition to determine capacitor sizes and
locations based on an average of the reactive loads as
even this number is subject to change as the load
varies. In addition, many of the reactive power
compensation techniques involves the optimization of
a cost function which require parameters such as the
cost of the capacitors, the cost of energy and the cost
of the peakpower savings to which only an estimation
( single-point) without exact certainty can be obtained
{3]. Consequently, the validity of the results generated
is questionable. '

Interval mathematics provides a powerful tool for the
implementation and extension of the “unknown but
bounded” concept [5]-[7]. Using interval analysis,
there is no need for many simulation runs as the total
variation of -the solution considers the simultaneous
variations of ail inputs in a single run. In this form of
mathematics, interval numbers are used instead of
single point numbers.

This paper presents an interval method coupled with
a heuristic techrinne for maximizing the cost saving;
by placing optimal capacitors at proper locations in
interval format. Uncertainties in the parameters are
integrated into the analysis, as interval numbers, to
allocate, sequentially, the capacitors according to the
upper limit of the maximum interval saving outcome.
Once locations are identified, the standard capacitor
size, at a selected location, is determined through the
optimization of the cost saving function. The method
offers utilities with alternatives for selecting the
standard capacitor sizes to be used and the associated
costs to be saved. To overcome the difficulty of-
conservative bounds, a procedure is devised in order
to produce sharp bounds of the interval outcomes and
consequently enhances the decision making process.
The proposed method is tested on a nine-bus
distribution feeder and encouraging results are
reported.
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Il. THE GOVERNING EQUATIONS

In order to account for uncertainties associated with
the capacitors sizing and location problem, the
maximum cost saving analysis is followed [4]. The
input parameters’ uncertainties, in interval format, are
integrated into the governing equations as follows:

P = Zlile 1¢))
1=l

where P is the total active power loss for a distribution
system with n branches, /, and R, are the current
magnitude and resistance, respectively of branch i.
The branch current can be obtained from the load flow
solution. This current has two components; active (I,)
and reactive (/,). Thus, the system losses can be
written as

P=YIR +> IR, @
i=l i=1

If a capacitor of current I, is placed at a node %, the
ystem losses are

P=Y1IR, +Z(1 +L R, + 3 IR, )
i=l i=k+1

Subtracting (3) ﬁ'Om (2), the loss reduction AP, is
k k
AP, =-21, 3 I.R I} R, @

i=1 i=1
Assuming there is no significant change in the node
voltage after setting the capacitor and using the cost
function equation, the cost reduction can be defined as
AS =KPAP +K,AE -K_ 0, )

where K, is the annual cost in $/KW and K is the
annual cost in $/KVAr for the capacitor placed at node
k both represented in interval format. X, is the interval
annual cost of KWh losses in $/KWh with the energy
losses, Jciined over a time period 7, using (4)as

AE, =-"L,TIC,,ZI R, -TI ,‘ZR ©)
1=l i=1

where L, is the interval load factor. O is the capacitor

size at node k and equals

Qck =I V (7)
Substituting for (4), (6-7) in (5), we get
=-2K 1,,21 R -K IdZR ®)
i=1 i=l
where
K =K,+KTL, +—I££’£K’-‘—-
221,,.1{, ©)
i=1
K,=X,+KT
The value of I, that maximizes the cost reduction is
obtained by
OAS
= =0 i0
o, (10)
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From (9), we get the interval I, as

(an

Substituting from (11) into (8) and (4), we obtain the
interval maximum net saving and the corresponding
interval loss reduction as follows:

2 (CLR,)
&y TR

AS,. = d T
p ZR’

(12)

k
! ! (ZI Ri )2
APASmax __(KP )(z_Kl') u-l

K, Kp ZR

Using (7) and (11-13), respectlvely, we can
calculate the size of the capacitor used at a certain
node k that maximizes the total system cost reduction
and we can compute the maximum cost reduction as
well as the corresponding loss reduction, all in interval
format.

(13)

III. INTERVAL MATHEMATICS

Interval mathematics provides a useful tool in
determining the effects of uncertainty in parameters
used in a computation. In this form of mathematics,
interval numbers are used instead of ordinary single
point numbers. An interval number is defined as an
ordered pair of real numbers representing the lower
and upper bounds of the parameter range [6], [7]. An
intcrval - umber can then be formally defined as
follows; {a, b}, where a < b. In the special case where
the uppér and lower bounds of an interval number are
equal, the interval is referred to as a point or a
degenerate interval and interval mathematics is
reduced to ordinary single peint arithmetic.

Given two interval numbers, [a, 4] and [c, d], the rules
for interval addition, subtraction, multiplication, and
division are as follows:
[a,b]+[c,d]=[a+c.b +d]
[a.b]-[c,d]=[a-d,b~c] 14
[0,6]*[c,d] = [min(a,ad be,bd ), max(ae.ad be b)) 1D
[a,b)/[c,d]=[a,b]*[\/d,}/c],whered ¢[c,d]
Implementing interval analysis techniques confronts
some obstacles because its algebraic structure is unlike
that of common single point arithmetic. Accordingly,
interval computations may produce wide bounds.
Given a set of interval input parameters, the bounds
of the resulting interval computations may depend on
the calculation procedure as well as the input
parameters. Therefore, an effort has to be made to
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reduce the width of the resulting interval bounds.
Normally, the approach to producing better bounds
has been to rearrange the expression to reduce the
appearance of the interval parameters [6], [7].

IV. UNCERTAINTIES IN THE CAPACITOR SIZING AND
PLACEMENT PROBLEM

Inspection of equations (7-13) reveals that it is likely
that values for K, K., K and Ly can not be obtained
with absolute certainty. For instance, K, and X, , the
costs for the peak power and energy losses
respectively can be calculated in many ways but it is
probably known that there is an upper and lower
bound for these costs which can be attributed with
more certainty than a single- point value for each cost
[3]. Likewise, for the reactive load factor L;a range of
values can also be determined. Thus by using interval
mathematics, the uncertainties associated with the
capacitor allocation technique could be more
effectively understood if these input parameters were
treated as interval numbers whose ranges contain the
uncertainties in those parameters. The resulting
computations, carried out entirely in interval form,
would then literally carry t¢ uncertainties associated
with the data through the analysis. Likewise, the final
outcome in interval form would contain all possible
solutions due to the variations in input parameters.

V. ALGORITHM

The implementation of the proposed optimal
capacitor sizing and placement technique in interval
mathematics is performed in the Matlab® environment.
The steps of the algorithm are summarized as follows:
1) Run the load flow program for the original
uncompensated feeder to calculate the voltages and
curren{: at each bus using the Gauss-Seidel method.

-) Assumc an initial value for the single point estim:...
capacitor cost K as the average cost for all availahle
standards for the studied feeder.

3) Let the input parameters (K, K., K and L)) as an
interval numbers with a realistic tolerance of +5% of
their single point estimates.

4) Select a bus and apply (7), (11-13) to compute the
interval capacitor size, the interval current capacitor,
the interval maximum saving and the corresponding
interval loss reduction respectively. Repeat this step
for all buses in the feeder, except the source bus.

5) Identify the candidate bus that has the highest
interval cost saving (defined here as the bus with the
highest upper bound in the interval cost saving)
provided that the evaluated interval loss reduction and
interval capacitor size are positive.

6) Once a bus is identified as a candidate bus,
determine all the standard capacitor sizes lying within
the interval capacitor size at this bus. In case no
standard size lies within the interval, then the one
nearest to the interval is selected (i.e. the closest
standard size to both the lower upper bounds of the

THE ELEVENTH INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE  (:EPCON'2006)
e — —

interval). These procedures are applied at any one
candidate bus selected.

7) Perform the load flow calculations, for every single
standard capacitor selected earlier, to ensure that no
voltage violation takes place. If there is a voltage
violation for one or more standard capacitor sizes,
eliminate them from further consideration. If all the
capacitor sizes result in voltage violation, then go to
step 5 to select the next candidate bus.

8) If there is no voltage violation, set the standard
capacitor size, among the series of standard sizes in
this interval, that provides the highest cost saving at
this bus and take the corresponding exact capacitor
cost value K.

9) Repeat steps 4-8 to get the next capacitor bus and
hence the sequence of buses to be compensated until it
is found that there is no significant cost saving can be
achieved by further capacitor placement.

The above algorithm can be looked upon as
cousisting of two nested loops. The first is a global
one that loops over candidate buses to determine the
interval capacitor values at all buses and the
corresponding interval standard sizes. While the
second is local as it searches for the optimal standard
capacitor size, within an interval, at a specific
candidate bus.

VI. SIMULAYION RESULTS

To illustrate the numerical algorithm presented
above, a test feeder, shown in Fig. 1, whose load and
feeder data are listed in (8], was investigated.

1 2 3 8 9
N |
I T

fig.l Nine hus ‘o3t feeder

The radial distribution feeder has 9 lead buses and its
rated s:bstation voliage is 23kV. The estimated typical
values for K, K, and L, are $168/kW, $0.3/kWh, and
0.5 respectively [3], [9]. Commercially available
capacitor sizes with $/kKVAr are used in the analysis.
Table 1 shows an example of such data. As the
maximum capacitor size QCax should not exceed the
reactive load (i.e. 4186kVAr), this results in 27
possible capacitor sizes as shown in table II with the
corresponding cost/kVAr. Values for the 27 choices
are derived from table I assuming a life expectancy of
ten years (placement, maintenance, and running costs
are neglected) [9].

Table I
Available three-phase capacitor sizes and cost

Size (kVAr) | 150 | 300 | 450 600 900 1200

Cost($) 750 | 975 | 1140 | 1320 ; 1650 | 2040
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Table It

Possible choices of capacitor sizes and costkVAr
Q(kVA) | 150 ] 300 | 450 | 600 | 750 | 900 | 1030
SAVAr K} 35 |23 |22 | 216 | 183 | 228
Q{kVAr) | 1200 | 1350 | 1500 | 1650 | 1800 | 1950 | 2100
SAVAr | .18 | 207 {201 |.193 | 87 | 21 | 176
Q{kVAr) | 2250 | 2400 | 2550 | 2700 | 2850 | 3000 | 3150
$/VAr d97 1 a7 | 189 | 187 | a83 | a8 | 198
Q{kVAr) | 3300 | 3450 | 3600 | 3750 | 3900 | 4050
skvAar | 474 | ass | a7 | as3 [ as2 | .im

Applying load flow solution on this feeder, before
compensation, the cost function and the total power
losses are $ 131675 and 783.8 kW respectively. The
maximum and minimum bus voltage magnitudes are
0.9929 and 0.8375 p.u., where the voltage of the
substation (bus number 0) is assumed to be 1 p.u., thus
we have generally 0.8375<V; <l p.u. The following
two cases, A and B, describe the compensation
procedure for the test feeder; with the input parameters
K, K., K and Ly all assumed to be interval numbers
" with realistic tolerances of +5%. The computations are
carried using the Intlab toolbox [10].

A. Cased

To demonstrate the application of the proposed
algorithm, equations (7), (11-13) are employed to
obtain the required outcomes.

Table 1T
Optimal sizes of singly located capacitors, cost savings and losses

seductioni
Bus | Q. (kVAr) AS (8) AP (kW)
no.
1 12018.1,3057.1] | [170.16,353.27] | [3.4883, 6.0349]
2 [2247.2,3270.7) | [237.57, 455.33] | [4.1538, 6.937]
3 (35682, 4437] [4049,5664.6) | [27.184, 40.741]
4 [3415.8,42152] | [6860.9,9452.8] | [42.76, 63.979]
[; (2309, 2838 4] [7548,10320] | [45.223, 67.63]
6 (1997, 2453.4] [7236.8, 9882.3] | [43.086, 64.431]
7 1561.9, 1917.2] | [6729.8,9173.7] | [39.697, 59.358]
8 1100.6, 1349.5] | [6213.1, 8450.7] | [36.22, 54.156]
9 [836.88,1025.5] | is3::.4, 7552.1] | [32.218,48.171]

Table III shows the optimal size of a single located
capacitor (Q.), the maximum cost saving (AS) and
corresponding loss reduction (AP), for all buses, as
interval outcomes. It is noticed that the bus. that
provides the highest upper bound in the cost saving is
bus 5 (10,3208) which corresponds to the interval
capacitor size [2309, 2838.4] KVAr. This identifies
bus 5 as the first bus to be corapensated. There are 3
standard sizes which fall within this range (i.e. 2400,
2550, 2700 KVAr). Computing the cost saving for
each of the 3 standard sizes (provided no voltage
violation occurs), it was found that the size of
2700KVAr provides the highest cost saving. The
single- point estimates for the capacitor size,
maximum cost saving and corresponding loss
reduction at bus 5 were also computed and found to be
2560.4KVar, 8839.6%, and 55.849kW respectively. It
is clear that the estimated values of the outcomes are
within the lower and upper bounds of the
corresponding interval results.
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Additional economic benefits may be realized using
the above interval outcomes of the proposed
technique. It furnishes utilities with alternatives of
using any available standard capacitor size, lying
within the interval capacitor size outcome, together
with the associated cost saving. The maximum cost
saving, achieved by the selection of any of these
standard sizes, would certainly have a lower limit
which corresponds to the lower bound of the interval
outcome. Prior knowledge of such information could
be of significance in utility planning.

When the compensation procedure was continued,
after placing 2700KVAr of capacitor at bus 5, it was
found that interval outcomes of [410.36, 504.67]
KVAr, [1250.7, 1711.6] $, and [7.5283, 11.26] kW
are obtained at bus 9. This leads to a standard set of
450KVAr at bus 9 to provide further cost saving and
loss reduction. The final cost saving and loss reduction
of [216.77, 327.51] §, and [1.99, 3.04]] kW were
achieved by placing a third capacitor at bus 4. The
interval capacitor size at bus 4 is [618.78, 799.62}
KVAr leading to a standard size of 750 KVAr. The
proposed technique produces a total cost saving and a
total loss reduction of [9015.52, 12358.7] $ and
[54.74, 81.92] kKW respectively. The estimated values
of maximum cost saving and loss reduction are 10875
$ and 69.65 kW respectively by setting capacitor sizes
of 2550, 450, and 900 KVAr at bus 5, 9, and 4
respectively, Again, it is noted that the single-point
values are within the lower and upper bounds of the
interval outcomes.

Applying load flow solution on this feeder, after
compensation, the maximum and minimum bus
voltage magnitudes are found to be 0.9961 and 0.8825
p.u., i.e., there is an improvement in voltage profile of
about 5% in the obtained minimum voltage.

B. Case B

In view of the fact that the algebraic structure of
interval mathematics is unlike that of common single
point arithmetic, interval computations may,
sometimes, produce conservative bounds [6], [7]. In
order to produce better bounds (i.e. sharp bounds) of
the interval outcomes the term K,/ K,,”, appearing in
the governing equations, is proposed-to be of the
following form:

KT, -+l
PY 2 1,R,
£ =1+ L=l (15)
K, K,+KT

Equation (15) is then used to modity (7) and (11-13).
It is expected with such modification to get sharp
bounds of the interval outcomes as the appearance of
the interval input parameter K, has been reduced [6].

Table IV shows the results of the modified algorithm
and also its significance. For instance, at bus number
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S, the earlier radius (half the interval width) of the
capacitor size interval was 264.7. This value had led to
the possible use of 3 standard capacitor sizes falling
within that range. The correspondmg radius of the
interval numbers of the cost saving, and loss saving
were 1385.8 and 11.2, respectively. With the modified
algorithm, the radius of the interval number of the
capacitor size is reduced to 8.2467. This value would
lead to the use of a single standard capacitor size
within that range. The corresponding radius of the
interval numbers of the cost saving, and loss saving
after modification become 497.96 and 0.34904,

respectively.
Table IV

Optimal sizes of singly located capacitors, cost savings and losses
reduction using the modified technique

Bu | Q. (kVAr) AS ($) AP (kW)

H

no.

1 | [2230.1,27663] | [188.03,319.67] | [4.0079, 5.3224]
2 | [24832,2959.6] | [262.52,412.03) | [4.7958, 6.0912]
3 | [39434,4014.8] | [4474.7,5125.6] | [33.039,34.153]
a4 | 3775, 3814.1] | [75823,8553.3] | [52.295,53.332]
5 | [2551.8,2568.3] | [8341.7,9337.6] | [55.5, 56.198]

6 | [2207,22199] | (7997.8,8941.8] | [52.908,53.512]
7 | [1726.2, 1734.8] | [7437.5, 8300.7) | [48.787,49.262]
8 | (12164, 1221.1] | [6866.5, 7646.5] | [44.563,44.901]
9 | [924.88,927.95] | [6142.9, 6833.4] | [39.66,39.919]

Using the above results, a first standard capacitor
size of 2550 KVAr is placed at bus 5. When the
procedure is repeated, a second interval outcomes of
{479.8, 483] KVAr, [1552.9, 1738.6] $, and [10.34,
10.47] kW, respectively, are achieved at bus 9. This
will lead to a standard size of 450KVAr at this bus.
Final cost saving and loss reduction of [352.61,
427.84) $, and [3.26, 3.53] kW are achieved by
placing a third interval capacitor of [828.9, 868.7]
KVAr at bus 4, leading to a standard capacitor size of
900 KVAr. The technique provides a total cost saving
and total loss reduction of [10247.25, 11504.011 § and
[69.09, 70.19] kW respectively, when the above 3
standard capacitor sizes are installed. After
compensation, the maximum and minimum bus
voltage magnitudes are found to be 0.9961 and
0.88196 p.u. These results show that the width of the
interval outcomes of the maximum cost saving and
loss reduction has been reduced and their
corresponding estimated values, still fall within the
modified interval outcomes.

VII. CONCLUSION

The capacitor sizing and placement problem is
modeled using a combined heuristic and interval
mathematics method. Use of interval mathematics
enables the integration of the effects of parameters’
uncertainties into the analysis and eliminates the need
for many simulation runs. While catering for
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uncertainties, the method offers utilities with
alternatives for selecting the standard capacitor sizes
to be used and the associated costs to be saved. This
enhances their ability to make informed decisions
regarding mstallmg capacitors for reactive power
compensatlon in their distribution feeders. A
procedure is devised in order to produce sharp bounds
of the interval outcomes. Successful nmplementauon of
the method is described using a nine- bus test
distribution feeder.
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